skip to main content


Search for: All records

Creators/Authors contains: "Matson, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on the discovery and characterization of three planets orbiting the F8 star HD 28109, which sits comfortably in ${TESS}$’s continuous viewing zone. The two outer planets have periods of $\rm 56.0067 \pm 0.0003~d$ and $\rm 84.2597_{-0.0008}^{+0.0010}~d$, which implies a period ratio very close to that of the first-order 3:2 mean motion resonance, exciting transit timing variations (TTVs) of up to $\rm 60\, min$. These two planets were first identified by ${TESS}$, and we identified a third planet in the ${TESS}$photometry with a period of $\rm 22.8911 \pm 0.0004~d$. We confirm the planetary nature of all three planetary candidates using ground-based photometry from Hazelwood, ${ASTEP}$, and LCO, including a full detection of the $\rm \sim 9\, h$ transit of HD 28109 c from Antarctica. The radii of the three planets are ${\it R}_b=2.199_{-0.10}^{+0.098} ~{\rm R}_{\oplus }$, ${\it R}_c=4.23\pm 0.11~ {\rm R}_{\oplus }$, and ${\it R}_d=3.25\pm 0.11 ~{\rm R}_{\oplus }$; we characterize their masses using TTVs and precise radial velocities from ESPRESSO and HARPS, and find them to be ${\it M}_b=18.5_{-7.6}^{+9.1}~M_{\oplus }$, ${\it M}_c=7.9_{-3.0}^{+4.2}~{\rm M}_{\oplus }$, and ${\it M}_d=5.7_{-2.1}^{+2.7}~{\rm M}_{\oplus }$, making planet b a dense, massive planet while c and d are both underdense. We also demonstrate that the two outer planets are ripe for atmospheric characterization using transmission spectroscopy, especially given their position in the CVZ of James Webb Space Telescope. The data obtained to date are consistent with resonant (librating) and non-resonant (circulating) solutions; additional observations will show whether the pair is actually locked in resonance or just near-resonant.

     
    more » « less
  2. null (Ed.)
  3. Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ . 
    more » « less
  4. null (Ed.)
  5. Abstract

    We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0.″2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σupper limit ofMP< 7.1MandρP< 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date.

     
    more » « less
  6. null (Ed.)